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ABSTRACT

Two-dimensional equations of motion of doubly-rotated quartz plates

for the thickness-shear, flexure, and extensional vibrations under In-

plane initial stresses are employed to predict changes in the fundamental

thickness-shear frequencies due to initial stresses. Two types of initial

stresses are considered: (1) stresses due to a pair of diametral forces,

and (2) stresses due to steady accelerations for a three-point 'IT" shaped

mount and a four-point 111 shaped mount configurations.

Force sensitivity and acceleration sensitivity coefficients are

computed and compared with experimental data and existing computed results.

For both '"T" shaped and "~+" shaped mount configurations, mount orientations

* corresponding to the maximum and minimum of acceleration sensitivity are

L predicted.

C
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I. INTRODUCTION

Changes in the resonance frequencies of doubly-rotated, circular

quartz plates are Investigated when plates are subject to in-plane initial

i Dstresses. Two types of initial stresses are considered: (1) stresses due

to a pair of static diametral forces, and (2) stresses due to steady

accelerations when the plate is supported by a number of ribbon supports

attached to the edge of the plate.

In a previous paper, a system of six two-dimensional equations of motion

of crystal plates was derived for the vibrations of the flexure, extension,

C face-shear, thickness-shear, thickness-twist, and thickness-stretch modes

subject to initial stresses. By studying the free vibrations of these

six coupled modes (without initial stresses) in a number of doubly-rotated

* cuts of quartz plate (yxw 6/, with e - 33.90, 0 < 0 < 300), we found

that in the vicinity of the fundamental thickness-shear resonances, only

2
thickness-shear, flexure and extensional modes are predominant. Hence,

only these three modes are retained in the present study, and their govern-

ing equations are given in Section II. In Section III, solutions of these

equations are derived by the Rayleigh-Schr~dinger method of perturbation.

l It is seen that the frequency changes, in turn, depend on the solutions

of two related problems, i.e., solutions of thickness-shear, flexure, and

extensional vibrations without initial stresses, and solutions of initial

r F stress problems due to forces or accelerations. These solutions are

Igiven, respectively, In Sections IV and V. Finally, the changes of the

fundamental thickness-shear resonances are computed in Section VI.

The present study is an extension of our previous investigations In two

aspects: (1) the stress-strain relations when referred to the plate axes
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can now accommodate any doubly-rotated cut of plate, and (2) the coupled

L equations of motion for plate vibrations have been extended to include the

extensional mode in addition to the thickness-shear and flexural modes. 1'3

We note that the solutions of initial stresses due to diametral forces and

due to accelerations are unified as one by realizing that the former is a

particular case of the latter as discussed in Section V.

For plates subject to diametral forces, the changes of resonance

frequencies, represented by the force sensitivity coefficient Kf, are

predicted as a function of the force orientation for various cut orientations

such as AT, (yxwk)100/33.90, FC, IT, SC, and rotated X-cut. The predicted

results are compared to the experimental values of Ballato,4 Ballato and

Lukaszek,5 and calculated values of EerNisse5 by a variational method.

For plates subject to accelerations, a three-point "T"-shaped mount

and a four-point "+"-shaped mount configuration are considered. The changes

of resonance frequencies, represented by the acceleration sensitivity

coefficient Ka, for an SC-cut plate, are predicted as a function of the

direction of acceleration for various mounting orientations. Also values

of Ia , which is proportional to the "2g" tip over results, area Imax'

computed as a function of mounting orientation a.

It is found that for the "T"-shaped mount the minimum of acceleration

sensitivity occurs at orientation angle a - -15* and a - 75*, while the

maximum acceleration sensitivity occurs at a - +15 ° and a - -75. For

the "+"-shaped mount, the minimum of IKaI occurs at a 00 and a -45 ,

while Its maximum occurs at a - 15* and a - 75* .

i$ o
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* II. EQUATIONS OF MOTION FOR CRYSTAL PLATES UNDER INITIAL STRESSES

Let X€, Yc. and Z be the crystallographic axes of ci-quartz,

among which Zcis the axis of threefold symmetry (optical axis) and

• is one of the three axes of twofold symmetry (electrical axis). The relations

between the crystallographic axes and the plate axes of a rotated Y-cut

and a desubly-rotated cut of quartz plate are shown In Fig. 1, in which X,

L Y, Z or x!, x2 , x3 denote the plate axes in a right-hi d coordinate

sys tern.

A system of six equations of motion for the incrementa ltions of

the six lowest modes under static initial stresses was derived in a previous

1paper. By studying the free vibrations of these six coupled modes, i.e.,

extension, face-shear, flexure, thickness-shear, thickness-twist and

thickness-stretch, in a doubly-rotated quartz strip with a pair of traction-

free edges, we found that for a series of doubly-rotated cuts with 8 - 33.9*

but 0 0, 10, 15', 19.1', 21.9', 300, and in the vicinity of thickness-

3 shear cut-off frequencies, the amplitudes of the thickness-shear, flexure,

and extension are much more predominant than the other three 
modes. 2

Hence by neglecting the coupling with face-shear, thickness-twist and

thickness-stretch modes in Eqs. (55) of Ref. I, we have the two-dimensional

, -~stress equations of motion for thickness-shear, flexure and extensional

vibrations under initial stresses:

'

.c1

- .- '-* 4- -
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where T(O), T(0), T(O ) and U10 ) , U30 ) , U2  are, respectively,

the non-vanishing components of stress and displacement due to the in-

plane initial stresses, t() and t(l) are the zero and first order

incremental stress components, and u(I), u() and u () are the

components of displacement, respectively, associated to the thickness-
S

shear, flexure and extensional modes of incremental vibrations.

Also from Ref. 1, we have the linear stress-strain and strain-

displacement relations for initial fields:

T(0) - 2bC E(O) (2)
p Pq q

_ , . • ~ ~~~~~~ ~ . . ,,.-.4 . !-, -.



5

,E ) u ( O ) E O ) ' E 3° )  U 3 , 3

10)O LIM 10) (3)

5 1,3 3,1

In (2), b is one-half of the thickness and C are the second order
pq

elastic stiffnesses of the plate. In obtaining the last relation in (3),

we have assumed that the in-plane rotation associated with initial deforma-

tion is negligible.

The stress-strain and strain-displacement relations for the Incremental

vibrations are deduced, respectively, from Eqs. (50) and Eqs. (53) of

Ref. 1 as follows.

(0) = (0) K (0)
p pq (P)(q)q

(4)

* tli~ ~~1 2 0 3, u(0) ,. (01)
S+ll u2,1 2,1

r (0) o MUM

4 1 I ,3U ,

(0) (0) u(0) +U(0)u (0)
5 1,1 2,3u2,)

, (0) r (1)(0) + (I + (Ol (I)= I + U 21 u +u(5)6u 1 2,1 U l I

(1) I ) (0) + + UlU ,1
2,1u2 ,1  Il (0 'l

(0) (0) ( u() ( (l)

n~2 n3 T) 2 i 3  T14 T 6 01
r.

Vi
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where

c (0) C + C E(0) (6)
k. pq pq pqr r

and C are the third-order elastic stiffnesses referred to the platepqr

axes (x1) of the crystal plate. In (4), correction factors K(p) have

been introduced in order to improve the accuracy of the dispersion relations

from the present approximate equations of motion. Their values will be

given in Section IV when the free vibrations of the crystal plates without

initial stresses are studied.

By considering incremental vibrational modes dependent on x1  only,

we may write

u() . W(Xi)eiwt

t(0) = bv(xl)e Wt (7)" g u2

u) M bu(x)e

Substitution of (7) into (5), then into (4) and (1) leads to the displace-

ment equations of motion for steady vibration

T W + T w + w TV + v + T + u = w

I') 2 '1 3 4v,ll T5v 1  T6u1 l '7 ,lI

iw + F w + F w + v + +v1 + 6 u +F 7 1  2vI1,11 2,'1 3 0 1 1~l u U1

f * EwI1 + f2w + 3w 
+

4 Vl + v + 6U 1 + E7u, 
2

(B)

where Q - w/w1  is a dimensionless frequency, W - 66/pb2) 1/2

* the lowest thickness-shear cut-off frequency and K2  /12.

/12.
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In (8), T, F;, and El are functions dependent on the initial

fields of stress and displacement and the material properties Cpq and

Cpqr . The explicit expressions of these functions are given as follows:

, ..(O)r1 + u(o)l , (o) (o)l

1,3 I51 )1) 55 1,3J1

2% b2  (0)1 + u(0l (o), (o)Ul + (O)
2 3K 2 6 I[ i lj'] 15 1,3] 1,]]~,

+ (0~c)(1 + U)+ C(O)u~(I + U(O)J~

+ (0~c) 1 + U(O3 + ()O U)']) 55 U1,31 1,3L

+ I[C('O)(I + U0)+ CO)U(O)] u(O )3135 u1,31 1,3 _3I
-L J rc(o),(o) + Kc() 1 +U(0) 1  + U (0) K

C66 64 1,3 6 66 1 +[ l 6

+ +(o)u(O) + ) .(0 ) ] U(o)

+ [Cou~+ c)'3[ +u6~

4 1,3 6 , 1,3

T, b2  lt(O) + (0).(I)l I+u(O)l
4 2C6 ' L | )1 2,1 15, u2,31J[l + l)

" ~ ~+ Ic(O() + ..(o) ()o
51 u2,1 '55 u2,31 1,3
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2b [ .[ (1) (0) (,) (0) J,

T 5 3K2 66  11 2 1  + C 15 U2 ,3' 1 + U I)

+ [CM'UM' + cMUMI.4~( + u(O~)9 + o).MUM +) C o)U 0 U( ) l

+ t'2,1 55 2,3 , 1 ,1

+ [CMU)u~ + CMO ]3O)

I I6 [KjC(O) (O + C()U(O) + K KC ()(1 + U() 1+ u(0) K6* [ c)u2,1 + CJ3 )uO,3 C (!,u ,3

J-2 KCO r ~ c(o).o .o.o) ~(o) u f) K

KC66 L] 61 2,1 65 2,3 6J66 i,l 6

+b (u ()r' + C (0) I (0 +ci K( 1 KCo (0) (0)1 (1)( 0)( ()

1  ! 41 uu21 45 2,3 , 6 16 2 1,3,

S u O)] ,,o,(o] o

l[I;o ( + U ']) +" 5 l u 1l,3

9 :266 2,1 ,JIl

.( ) ( 0)() (0 0

55 u2,3J

S

S ,
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~1~ F b (0f). (0) ()[ (0)] (0)~

2 1C [14 "1 3  + CI6 2,1

* +..~(~2 K [C )( ,3) ~u~~

+ 1}2[c)~+ ~ + c +u~~ I ''1I '

+ C (0) ,+ u o ) +<roo) o( ) + ,1 + U
56 1,] 2,3 6 4 1,3 66 ],1)]

L3 ( < (0) (0) ( ( 0)

+ _ u c I + + 1+ u,
4  9K 2C 66 1 21 1 2, 1 6 2, 1

(1*u~) [(0) u(0)l (0) (0)

+ I + 2,U5 + C)3 uu

, :2,1 5 l1 + i'lJ + "55 1;0 1

+ () c ) u(0) (o ) (0)S2,1 c51 1 '1) 55 Ul,311,3

( 0) ( 0) (0) ( ) (0)

4 2 I[C6  1  u 2 ,1  1 5 u 2,3  16 I 1 u 2 ,1

• 5+ (.~ l u2,1( + +, +56 2 2,3

18

i+ < -'°' <~Co>.,,o> + ..(,) < O )O>. + K(o_<o I, + U I) +, ,u + T.,o/,2,

I)]

1. 6 1 U ,I I2, 1 65 u2 3 6 6 2 2

2, 11 21 5 23 , 51 u2,1 + C I5 ,3]

c
-. -
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F b (I 1[,IC(O) u *0) +_ (O (0) +K (0) cU(o)[i(0
5  3 2C66  1 1 u21 "15 u2,3 6 16 2 2,11

+4 I[eiC()U(0) +~ C()U + KK6C5) (I +U (1)) u (0512,) '55 u2,3 + "656 2 l2,31,1

*+ [Kc () )~ + ( u (0) + KC1C (1 + U (')3 u (0)
U I51 2,1  C55 2 ,3  656 21 2 J 2,1,3

a+ C (0) u1 (0) + C(0) u(0) + K (0)1 + U (+ 0

1 1 2,1 +  35 "2,3 K6 36 2 u2,31,3

+ I o, + C<o)U<o + <K6C<o) I + u4)]( + u,)J+KL161 u2,1 65 "2,3 +  6 66 22 1,1

+ (b 2/3) <U<, o$ UM + CM)UM<] ,
' L" "2,1 + "11 , 1 52,3] '1<,.
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3K 2 c 15 1,3j 2,1 51 I

I "

+ (o).(o) .(o1155S U,3 u2,3

i ,g
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+ I[K C() +u(0)l + C(0) u(0)1(0)U~~1
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E, b (K [C (0) + K U~i + U(01, +i (
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b (0)u(O) + C(o)u(o) + (0) 1 +U( )  1 +
4 K 2C66  I! 2,1 15 2,3 16  ( 1 1,))

I3

+ (0). (0) (0).C (o 1 (o) )J[) u(0)

;+ 51 2,1 55 2,3 6 56 J ,3 1

w -K I C()t{+C()()+K I + 1 1 u(0
[5 K 2 C66 K 1 5 If 2,1 '1 u2,3 6C16 1 2 J I u),))I,)

+ l[I:C(0 ) U(0) +C(O) (0) + -K C(0) 1 + U(1))] + U(0)
'51 2,1 +55 2,3 + 6 56 2 41,3

,.1 51 u2,1 + 55 u2,3 6 656 u1,3},i

t+ 1 I31 U2,1 + C 35 u2,3 +  2636 1,31,3)

Ab (0 - (0) (0) (0) (0)1

E 6m= -2C [Cl)i (I+ U 1,1) + C 15uOf (,111 + u113K C66

+ + u(0) (0). (0)1 (0) _(0)/2b
S+ IC51I + I,) + c1u,3J 1,3 +T

+ [7K)1 i C (0) 1 + + C 1 +
3K If '1 ), 15 1,3j 1 , I' ,I

+ J oK c 0)1 U O) + O) l ) 1+u(O)
1 51 1 1,) 5 1,3 11 * I,Ijj,3

.- ,C + "51 I,il +  55 1,31 1,3 ,l

+(LoJ(T(o) + T(o) )

[KIC3l)(1 + Ul~) + C3) ] ,3b 11,3,3 5,3

(9)

!'S
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Once the initial fields of stress and displacement are determined from

the solutions of initial stress problems which will be discussed in

Section V, then these functions of (9) may be regarded as known functions

of X and x3. Each of these functions may be separated into two parts as

T TI + ti F F.I + fi E.i + e19 (10)

where T., F. and E. are associated with vibrational motions without
I I I

initial stresses, while ti, fit and e1  are the quantities contributed

by the initial fields.3 Therefore, by setting initial stresses and displace-

ment gradients in (9) equal to zero, we obtain

b2C 1) 2 KK6C 6

3K2C 66 T 3 T 5 T7 KC66

b bC16  bC 1 1
2  F4  ., F6 = E2 - E4  3KC66 E6  3K2j 3KC6 66

T 2 T 4 T6 = FI = F3 = F5  F7  E I E 3 - E5 = E 7 W 0 (11)

The explicit expressions for ti, f. and e. are obtained by inserting
II

(9) and (i1) into (10).

e
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III. SOLUTIONS BY PERTURBATION METHOD

For the thickness-shear, flexure, and extensional vibrations under

static initial stresses, (8) can be expressed in the matrix form

LV - XV (12)

where X - -0 is the eigenvalue, V (w,v,u) the displacement vector,

and L the linear differential operator. By inserting (10) into (8), we

may separate L into two parts

L - 0 + Q (13)

4 where

T ]a 11 + T3 T5 i ;1T l 7a

L F2a1 FLiI Fa

L E2aI E4  1  E6a ll (14)

t a l+t2ai+t3 t al+tal t7B a

1 1 3 4 15 1 61 1

i2 a + e•3 e411+e5a1  e6a l+e7a1 (15)

L0  is the part of the operator associated with vibrations without

initial stresses, while Q is the part of the operator containing all the

effects of the Initial stresses Inside the plate. In general, Initial

stresses also affects the traction boundary conditions, for Instance, as

shown in Eqs. (52) of Ref. I. However, we will neglect contributions of

initial stresses to the traction boundary conditions by assuming that

these effects at the edge of the plate have little Influence on the

Now"
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fundamental thickness-shear vibration whose displacement is mostly confined

*in the central portion of the plate. For instance, by neglecting the

initial fields in (4), the traction-free conditions

t ( -t () at x -ia (16)
1 6 1 1

may be expressed by

PV -O at x I -a , (17)

where the linear operation P is given by

F o1 0 1
P = K 6C6 6  KK6C66 a I KKI c 6  (18)

KK 6 6C 16  KK 6 C 16 aI  KKIC 1 1 jI

1,3
* From previous calculations of the initial stress fields, we found

that the values of ti, fit and e. are of several orders of magnitude

smaller than those of T., Fi  and E., respectively. Hence, we employ

the Rayleigh-Schrbdinger method of perturbation to calculate the frequency

changes due to initial stresses.

Let V and A be the eigenvector and eigenvalue, respectively,

! of the nth mode satisfying (12) and (17). Therefore,

LVn X n Vn, PV - 0 at x, a +a (19)

* where

L -L 0 + CQ Q-cQ . (20)

A small parameter £ is introduced In (20) to Indicate the smallness of
0 1

Q as compared to Lo, while QI is assumed to have the same order of

magnitude as L.0. We let

-. . - . _ L _
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Vn - Vno + cVnl +

n n0 +nl + ... (21)

Substitution of (21) into (19) and collection of the zero and first

order terms of c leads to

LoVno - A nVno,  PVno - 0 at X1 - +a (22)

LoVni + QIVno ' AnOVni + X nVno, PVni - 0 at x1 - +a (23)

We see that (22) corresponds to plate vibrations without Initial

stresses and with traction-free edge conditions. L0  is a symmetric

operator and no's are free-vibrational modes forming a complete,

othonormal set (after normalization). Therefore

V *v (2'4)
mo no mn

In (23), Xnl and Vnl are the first order perturbations of An

and Vn, respectively. We let

-VnI I aVnmVno (25)
m

By inserting (25) into the first equation of (23), multiplying the

*resulting equation by Vno and employing (24), we obtain

xni ' Vno * QI Vno

or CAL a V no •cQ 1  Vno Vno• Q Vno (26)

The second equation of (23) Is also satisfied by (25) because V no

F satisfy the second of (22).

* We choose n-I to Indicate the fundamental thickness-shear mode

• . of vibration. From the second of (21), we have

i
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2 n2 (27)1' ")10 +  )11 or ) 0 +  1l

S

where S1 is the resonance frequency of the fundamental thickness-shear

without initial stresses. The frequency changes, by (27) and (26), can

be expressed by

- 12 _ 2
Af M 1 - 0 1 " 0 1 a. 10  . (28)0 10 2SI 0 2"10 2)10

To compute the changes of frequencies from (28), we need V10 and

X1 from the solutions of free vibrations of crystal plates (see Section

IV) and Q from the solutions of initial stress problems (see Section V).

is

£

4.

jp

C2

' .',...
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* °IV. THICKNESS-SHEAR, FLEXURAL AND EXTENSIONAL VIBRATIONS

OF DOUBLY-ROTATED QUARTZ PLATES

2
For the resonance frequencies (Alo - -10 ) and the vibrational

T* modes V10 - (w, v, u) , we should look for solutions satisfying the two-

dimensional governing plate equations and traction-free conditions at the

edge of a circular crystal plate. An analytical solution for such a

£ problem is extremely complex and difficult to obtain, if not impossible.

However at predominantly fundamental thickness-shear resonances, the

vibrational motion is mostly confined in the middle portion of a flat

£ plate. This mode is concentrated even more in the central portion of a

contoured or electrode plated plate.6'7 Furthermore, the thickness-

shear resonance frequencies are shown to be insensitive to the width of

i * a rectangular plate by Sykes and predictions from one-dimensional

solutions are shown to be very accurate when they are compared with experi-

mental data.9'i0 Therefore in this section of the paper, the circular

plate is approximated by a square plate of equivalent area and one-dimensional

solutions are obtained to predict resonance frequencies and vibrational

modes.

The one-dimensional equations of motion and traction-free edge con-

ditions at x1 - ta (2a -Al R, R - radius of the circular plate) are

given by (22), with L0 and P defined, respecitvely, by (14) and (18),

and n-.

We assume that displacement V 10  (wvu)T has the vibrational form

w- Aiq cos EqX 1

q(



19

3
v - I A2q sin qx

qq

3
u - I A sin x (29)

qwl 3q ~q I

By substituting (29) into the first of (22), we have the dispersion

relation (P vs. q, q-1,2,3)

2- - -2C&

q li qCl6 " q16

3-q6. -o (30)

q16 -qC66 66  2

where Cq are the dimensionless wave numbers and the roots of the

above bicubic equation in Q and for a given value of SI, and

Cpq = i()(q)Cpq/K2C 66  (31)

From the linear, homogeneous equations governing the displacement

amplitudes, we obtain the amplitude ratios

A iq A 2q A3q 1 2q 3q q-1,2,3 (32)

where

-2
2 -2-

Cq C6 6  3 6

C 3 q 0 - 1K zI 1 q 1 6

-qCl6 {q 66
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362- 11  ~ q 16
D (33)

-C 16 q 66

Correction factors K (p) introduced in (4) and consequently appeared

S Iin (9), (11), (30) and (31) are given below

I if p - 3,5

-- if p , 2,4

K(p) m K1  if p- I (34)

Q if p- 6K6 " C

|c

In a previous study 2 of free vibrations of the first six modes in

doubly-rotated quartz plates, correction factors are introduced to correct

* the cut-off frequencies of thickness-stretch, thickness-twist, and thickness-

shear modes (or called a, b, and c modes, respectively) by letting

f I if p - 1,3,5

K -K -- if p - 2,4,6.

Since only three of the six modes are included in the present study, two

new correction factors K 1  and K 6 are Introduced in (34) to correct

the behavior of the dispersion relation from the three-mode theory as

compared to that of the six-mode theory. K 6  is employed for correcting

the thickness-shear cut-off frequencies and K1  for adjusting the slope

of the extensional branch (E1). The values of K, and 'C6  for various

e *cuts of quartz plate are listed in Table I.

Ist
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Dispersion curves computed from (30) for an SC-cut quartz plate are

shown in Fig. 2 by the solid lines as compared with those in dashed lines

computed from the six coupled equations of motion.2 It may be seen that

the three corresponding frequency branches from the three-mode and six-

mode theories agree closely for frequencies up to and including the

fundamental thickness-shear cut-off frequency.

Substitution of (29) into the second of (22) for traction-free edge

conditions leads to three linear homogeneous equations on Aiq

(Mpq]{Aiq} - 0, p,q- 1,2,3 (35)

where

Mjq = Cll q sin Cqa

M2q = (KIC 6 1'3qEq + KK6C6 6(0 + a2q~q)]cos &qa

M3q = [KIC 11 3 q&q + KK6C16(0 + a 2qEq)]Cos qa (36)

For nontrivial solutions of (35), we have

detM W 0 (37)

which is the frequency equation for the thickness-shear, flexural, and

extensional vibrations.

Calculations of the resonance frequencies of SC-cut plates are

performed and illustrated in Fig. 3. By comparing Fig. 3 with Figs. 4

and 5, which are the corresponding frequency spectra calculated from the
' 2

six-mode theory, we see that the present three-mode theory gives very

good predictions for frequencies of thickness-shear, flexural, and

extensional modes.

6L
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From (35), we can also calculate the amplitude ratios

A)l: A)2 : A 13 a 2 : a3 (38)

if we choose A1 as the reference. Then the displacement field (29)

can be expressed in terms of a and 6q (with 1 1)

3
qi6 cos EqX I

3
v0 v AI) q! jaq2q sin E~,(39)

3
qil qa3q sin qx

The remaining constant A11  can be determined from the normalization

condition (24), i.e.,

10 Vlo fA {w v u} 1v dA 1 (40)

I"

_ V... _' ..2. :" ... - - _ . __ _ ,_ _ _._ _

u
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* V. INITIAL STRESSES IN CIRCULAR PLATES

Two types of initial stress problems are considered in this section.

1. Circular plates subject to a pair of diametral forces.

4 1A circular plate of diameter d(-' 2R) and thickness 2b Is referred

to a rectangular coordinate system X, V, Z (or x) with the XZ plane

being the middle plane of the plate. Let N be the magnitude of the

compressive diametral forces and 4, (the azimuth angle) to denote the

orientation of the force with respect to the X axis as shown in Fig. 6.

2. Circular plates subject to in-plane, steady acceleration.

The same plate is now supported by a number of metal ribbons attached

to the edge of the plate as shown in Fig. 7. The locations of the supports

are denoted by angles a., i - 1,2.3... s for s supports (s > 2). The

torientation of the body force G (force per unit volume) which has the

opposite sense to the acceleration is denoted by the angle ip with

respect to the X axis as shown in both Figs. 1 and 7. Let N.i and T.

be, respectively, the normal and tangential components of the force from

the support at at. to the plate.

Effects of initial stresses of both types on the changes in the

S thickness-shear resonance frequencies had been studied previously for

rotated Y-cuts of quartz plate.1, In both cases the initial stresses

were obtained from solutions for isotropic plates, then strains were cal-

culated from the anisotropic stress-strain relations. The predicted

results were compared with experimental data with good agreement for

AT- and V-cuts.

In the present paper, the same approach is adopted. Since the Initial

stresses due to acceleration, problem (2), have been given In detail in Ref.

3, Eqs. (1) -(11), they will not be duplicated here.

LI
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We would like to note that the solution for the problem (I), Initial

*) stresses due to the diametral forces, can be deduced from that of the

problem (2) by setting

s 2, G - O,

S II 01 -, 02 - a1 +1800,

N, N 2 -N,

1 2T1 = T2 ,=0, (41)

in Eqs. (1) - (11) of Ref. 3.
11

In a study by Janiand, Nissim, and Gagnepain, initial stresses

were obtained directly for the anisotropic plates and employed to predict

the changes in frequencies. It showed some improvement in predictions

of frequency changes due to diametral forces, but almost no improvement

for the case of acceleration effect.

7

I .. 4 -
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VI. CHANGES IN RESONANCE FREQUENCIES

Once the resonance frequencies X0 (a -S1O)  is obtained from (37),

displacement field V from (39), and Q from (15) and initial fields

3t given in Section V, the frequency changes due to initial stresses can be

obtained by numerical integration of (28)

f V 0 
O  Q * VIodA (28)'

where A is the electroded area of the plate.

(1) Effect due to a pair of Diametral Forces

Following Ratajski's 12 definition of force sensitivity coefficient,

we have

Af I d __f .2 F (42)

f 0 fW N 60 0 6

where N is the magnitude of diametral forces, m the order of harmonic

' overtones of the thickness-shear frequencies, and 0,0 are the angles of

rotation for doubly-rotated cut as shown in Fig. 1.

Computations of Kf as a function of the orientation of the

* diametral forces P are made for circular quartz plates of AT-cut (yxX)33.9 °,

(yxwt)lO/33.9°, FC-cut (yxw1)5°/33.9°, IT-cut (yxwt)l9/33.9*,

SC-cut (yxwt)22°/33.9°, and rotated X-cut (yxwt)30°/33.9°. The results

* are shown in Figs. 8 to 13, respectively. They are compared with the

experimental results of Ballato, Ballato and Lukaszek,5 and the calculated

result of EerNisse. 5 The results of Refs. 5 and 11 both show the improve-

ment of predicted frequencies by employing the initial stress field of

anisotropic plates under a pair of diametral forces.
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(2) Effect due to Steady Accelerations

*We define the acceleration sensitivity coefficient

K Af d AF 8/7 m F',-;ai;') (43)a" f0 " B f O/" f0 ngd C766

2
where B - ngp(irbd /2) is the magnitude of body force on the plate and
ng the acceleration in terms of the acceleration of gravity.

As indicated in (43), K a is also dependent on the positions of

supports of the plate. Two support configurations are considered as

follows.

(a) Three-point "T" shaped mount

A support configuration of a circular plate with three supports

of which two supports are 1800 apart and the third is 900 from the

first two forming a "T" shape is called a "T" shaped mount as shown in

Fig. 14. The angle a denotes the orientation of the "T" shaped mount,

while 1P indicates the orientation of the body force due to acceleration.i * Calculations are made for a circular SC-cut plate (yxw)23.750/33.9 °.

K is computed as a function of 1P for a - 0°,-15°,-30 °, and -45,a

r and is plotted in Fig. 14. We see that both the magnitude and location

i * of IKalmax change as the support orientation a changes. By repeating

the above process of calculation, we obtain IK I as a function ofa max

a as given In Fig. 15. It can be seen from Fig. 15 that the minimumA

i tacceleration-sensitivity occurs at a m -15° and +75, while the maximum
4 acceleration-sensitivity occurs at a - +150 and a - -75°  The variation

of acceleration sensitivity as a function of a for "T" shaped mount

has been studied experimentally by Goldfrank and Warner and their experi-

mental values are shown as solid dots in Fig. 15 for comparison. 13
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The result shown In Fig. 15 Is also consistent qualitatively with the

experimental data by Kusters, Adams and Yoshida, 14 for their study is

on a two-point mount configuration (see Fig. 2 of Ref. 14). We note the

convention for the mounting angles in Ref. 14 is the opposite of that

employed in the present paper.

(b) Four-point "+" Shaped Mount

A four-point support configuration of a circular plate for which

each support is 900 from its neighboring supports is called a four-point

"+" shaped mount. Computations on an SC-cut circular plate have been

carried out in similar manner as in case (a). The plots of K vs. ip fora

various values of a and IKalmax vs. a are given in Figs. 16 and 17,

respectively.

Figure 17 reveals that the minimum of acceleration sensitivity occurs

at a - 00 (or 90*) and a - 45° (or -45*), while the maximum occurs at

a - 150 and a - 75*. It may be seen that there exists a wider "valley"

at a - 450 than that at a - 0'. It therefore appears to suggest that

it is more likely to obtain experimentally a IK I - minimum near a - 450
a

than at a - 00. Nevertheless, a minimum of IKaI at a - 0* had been

attained experimentally by Warner.15

The effect of small deviations of the support locations from the 900

angle in the 'W' shaped mount has also been investigated by allowing one or

two supports having an angle of deviation 6 for -30 < 6 < 3*• Results from

several series of computations shows that the magnitude of acceleration

coefficient IKI increases as 161 Increases for small deviations

-3° < 6 < 30. However, the IKalmax vs. a relation remains practically

the same as that shown in Fig. 17, therefore it is independent of 6.

I4.
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In all the calculations, we have employed Bechmann's values of the

second-order elastic stiffnesses 16 and those of Thurston, McSkimin and

Andreath for the third-order elastic stiffnesses 17 of quartz. For calculat-

ing support reactions from ribbon supports due to accelerations, we have

assumed each ribbon support is made of nickel and acts as a cantilever

with length t - 6.35 mm and rectangular cross section (hi I 0.076 mm

and h2 - 1.270 mm). The Young's modulus for nickel is E - 4.82 x 1O9

dyn/cm2  For more detail, see Eq. (2) of Ref. 3.

L
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Table I

Values of correction factors i and K6

for doubly-rotated quartz plates

Doubly rotated quartz plates K K6

(yxwk) W/0, 0-33.9*

AT-cut, 0 *O0 1.0 1.0

100 1.0116 0.9818

FC-cut, € 150 1.0214 0.963

IT-cut, € - 19.1* 1.0252 0.9492

SC-cut, 0 - 21,9 °  1.0252 0.9397

Rotated-X-cut, * - 30* 1.O46 0.918
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